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Abstract. We describe a computing framework or portal called IPARS for model-
ing multi{phase, multi{physics ow in porous media, suitable for massively parallel
computers or clusters of workstations. The framework provides all the memory
management, message passing, table lookup, solvers and input/output so that a
developer only needs to code the relevant physics. This software permits rigorous,
physically representative coupling of di�erent physical and numerical ow models
in di�erent parts of the domain and accounts for structural discontinuities. In ad-
dition, di�erent formulations or physical models can exist on di�erent subdomains.
The framework also permits non-matching grids between subdomains for handling
geological faults using either a mortar or a dual formulation. In this paper we dis-
cuss single{, two{, and three{phase ow models that have been implemented within
the framework based upon a fully coupled dual interface formulation for coupling of
subdomains. A brief discussion of multi{physics using the mortar formulation can
be found in [16] of this proceedings.

1. INTRODUCTION

Cost{e�ective management of oil and gas reservoirs is driving development of a
new generation of reservoir simulators. The central challenge is to maximize economic
bene�t from a resource whose properties are only poorly known and in which a variety
of complex chemical and physical phenomena take place. Three areas of research are
converging to address this challenge: multi{physics multi{numerics models, improved
reservoir description, and production optimization.
The heart of this e�ort must be a robust reservoir simulator. This will comprise

coupled programs that together account for multi{component, multi{phase ow and
transport through heterogeneous geological structures (porous media) and through
wells, and surface facilities. The coupled programs must accommodate di�erent phys-
ical processes occurring simultaneously in di�erent parts of the domain, and for com-
putational eÆciency, should also accommodate multiple numerical schemes.
A prerequisite for e�ective reservoir simulation is a high quality description of the

reservoir properties that govern uid ow. Recent advances in seismic pro�ling, well
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logging, continuous data telemetry, pressure transient testing, geostatistics, chemical
tracers, and automated history matching o�er great potential for better de�ning these
reservoir properties. These techniques yield a heterogenous set of data structures that
represent di�erent geological features at di�erent levels of spatial resolution. Thus
the practical integration of these new, multi{scale, static and dynamic data sources
presents a huge data management challenge. After a reservoir is brought onstream
this diÆculty is compounded by a feedback loop between ow rates predicted by
the simulator and those observed in the �eld. This feedback demands continuous
updating of reservoir properties through history matching.
In contrast to the properties of the reservoir, the number, locations and ow rates of

injection and production wells are entirely determined by the operator. The problem
is to �nd the optimal recovery strategy within an extremely large space of possible
strategies against the backdrop of uncertainty in the reservoir description. The ability
to carry out comparative computations and quantify uncertainty in many multi{scale,
multi{resolution datasets obtained from reservoir description and reservoir simulation
models is essential for solving this problem. Moreover, it is an economic imperative
to de�ne a recovery strategy as soon as possible at the appraisal stage, and to re�ne
that strategy in real time as new wells are drilled and new data obtained.
Implementing cost{e�ective groundwater remediation strategies poses similar chal-

lenges to those described above for petroleum reservoir production. Both applications
involve complex, diÆcult{to{characterize geological structures and require selection
of an optimum strategy from a large set of possibilities. The environmental appli-
cation presents special additional diÆculties, a primary one being that the location
and duration of a contamination source are often poorly constrained. Furthermore,
in contrast to petroleum reservoirs, there is no revenue stream with which to balance
the cost of obtaining additional information. Hence groundwater remediation places a
premium on realization management, i.e., being able to carry out a very large number
of conditional simulations in order to maximize the value of existing information and
to guide the collection of new data.
Based on the needs described above, a new generation framework or portal called

IPARS (Integrated Parallel Accurate Reservoir Simulator) suitable for single proces-
sor and massively parallel computers and clusters of workstations has been developed
at the Center for Subsurface Modeling (CSM) at The University of Texas at Austin.
The IPARS framework provides all the memory management, well management, mes-
sage passing, table lookup and input/output management, so that the developer only
needs to code the relevant physics. The portal is designed for portability on a collec-
tion of machines with no special adaptation of the code between machines.
In the past, porous{media simulators have been developed with a focus on a particu-

lar physical process, e.g. single{phase ow, Richard's equation, or steam stimulation.
As �eld development strategies become more complex, several recovery processes
often occur simultaneously within the same aquifer or reservoir. Through the de-
velopment of the multi{block paradigm, we have broken the restraint of traditional
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\one{process{at{a{time" simulators that cannot couple the di�erent domains in such
�elds. The IPARS framework permits rigorous, physically representative coupling of
di�erent models in di�erent parts of the domain. A discussion of interface couplings
based on mortar spaces can be found in [1, 20, 19, 15] and in these proceedings in
[16]. Both the mortar and dual approaches have advantages and disadvantages which
are currently under investigation at CSM.
In addition, di�erent formulations or physical models can exist on di�erent sub-

domains. In this direction, IPARS has been loosely coupled with the Sandia geome-
chanical model JAS3D [12]. This coupling allows for large nonlinear deformations,
contacts, sliding surfaces, and inelastic responses in the geology.
The outline of this paper is as follows: In Section 2, we briey describe the IPARS

framework. In Section 3, we de�ne single{phase, two{phase hydrology, and three{
phase black{oil models implemented under IPARS. For description of an air{water
model as well as computational results see [11]. A formulation of the dual interface
approximation is given in Section 4. In Section 5, computational results are presented.

1.1. Acknowledgements. We would like to acknowledge several contributors to the
IPARS project, in particular Manish Parashar, Ivan Yotov, Qin Lu, Gai Xiuli and
Steve Bryant.

2. THE IPARS SIMULATION FRAMEWORK

The development of a subsurface simulator framework suitable for research and
with possible commercial applications has been an ongoing project for the past four
years at CSM. The IPARS framework [18, 13] runs on parallel and single processor
computers, solves problems involving a million or more grid elements, and supports
a variety of physical and mathematical models and in the future generalized well
management.
The simulator framework supports three dimensional transient ow of multiple

phases containing multiple components plus immobile phases (rock and adsorbed
components). Phase densities and viscosities may be arbitrary functions of pressure
and composition or may be represented by simpler functions. The initial system is
isothermal, but nonisothermal calculations may be added later.
Porosity and permeability may vary with location in an arbitrary manner. Relative

permeability and capillary pressure are functions of saturations and rock type. The
framework allows for general two{phase and three{phase formulations. Any depen-
dence of relative permeability and capillary pressure on composition and pressure is
left to the individual physical model.
The subsurface reservoir/aquifer consists of one or more geological fault blocks.

Each fault block has an independent user-de�ned coordinate system and gravity vec-
tor. Flow between fault blocks however, can occur only through a common face. The
primary grid imposed on each fault block is a logical cube with variable grid spacing.
Irregular geometries are represented by keying out (removing) selected grid elements.
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Currently, the framework supports logically rectangular grids. Dynamic grid re�ne-
ment of the primary grid on each fault block is supported by the framework but also
must be supported by individual physical models.
The IPARS framework supports an arbitrary number of wells each with one or

more completion intervals. A well may penetrate more than one fault block but a
completion interval must occur in a single fault block. On parallel machines, well grid
elements may be assigned to more than one processor. The framework assigns primary
responsibility for a well calculation to one of these processors and communicates well
data between processors.
Discretizations that have been employed in the framework are cell{centered �nite

di�erences or mixed �nite elements based on the RT0 spaces and backward di�erences
in time. Provision has been made for higher order approximations. The framework
has also been designed to handle dynamic grid re�nement but this is not currently
implemented.
The nonlinear algebraic equations are solved by either fully implicit or semi{implicit

techniques. The simulator has the capability of updating quantities that do not
strongly inuence the primary unknowns both between Newtonian iterations and
between time steps. For example, tracer calculations may be made between time
steps. Both mass balance and volume balance formulations are supported. The
framework supports multiple linear solvers such as line SOR, Petsc, and multi{stage
preconditioners [8, 5]. Currently, there are �ve separate solvers in IPARS.
Portability of the simulator is emphasized as well as ease of implementation. In

particular, the object oriented framework has modules written in Fortran, C, and
C++. The basic idea has been to code in the language most appropriate for a given
calculation. The code is portable across several serial and parallel platforms including
Linus (clusters), SGI, RS6000, T3E, and Windows (DOS). The parallel portion of the
simulator is formulated for a distributed memory, message passing machine. MPI was
selected for the base code but the framework is organized to facilitate incorporation
of any reasonable message passing system.
Internally, the simulator uses a single set of units chosen to minimize multiplication

by conversion factors and facilitate interpretation of debug output. Externally, the
user may choose any physically correct and consistent units. The simulator will
determine and apply the appropriate conversion factors. The simulator provides
default sets of external units.
Free form keyword input is used for data input to the computation stage of the

simulator. The keyword input �le is explicitly de�ned to serve as an output �le for
a graphical front end or geostatistical grid and property generator. Work on web
launching of IPARS is ongoing and preliminary results using NETSOLVE have been
encouraging [2].
Multiple levels of output with visualization are provided in the simulator. These

range from selective memory dumps for debugging or restart to minimal output for
automatic history matching. Present research involves the coupling of IPARS with
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ADR (Active Data Repository) [3, 9] for exploration of history matching scenarios
with uncertainty in the geological data. ADR enables integration of storage, retrieval,
and processing of multidimensional multiple datasets on parallel machines and pro-
vides support for spatial queries and complex data aggregations.

3. PHYSICAL MODELS IN IPARS

In the IPARS multi{block setting, each of the faultblocks can have a di�erent
physical model associated with it. Traditionally, a physical model is a set of di�er-
ential equations (conservation and constitutive laws) describing a particular physical
process, e.g., single{phase or multi{phase ow. Additionally, for a given physical
process, there can be multiple discretizations and numerical algorithms implemented.
For example, an algorithm for the two{phase ow can be solved in an implicit, semi{
implicit. or explicit fashion. A physical model is then the set of speci�c discrete
equations which are to be solved.
There are currently eight physical models in IPARS:

� Implicit hydrology model (two liquid phases)
� IMPES hydrology model (two liquid phases)
� Two implicit black{oil models (di�erent primary unknowns)
� Implicit air{water model
� Two single{phase models (implicit and explicit)
� Compositional model

The di�erential equations for each model typically form a subset of the following
general set of equations. Consider isothermal ow in the absence of reactions, dis-
persion and adsorption. The conservation of mass is speci�ed for each component
denoted with subscript M as follows [4, 10, 14]:

@(�WM )

@t
�r � FM = qM :(1)

HereWM is the total component concentration which is equal to the sum of �mSmnmM

over all phases m, with �m; Sm denoting density and saturation of phase m, respec-
tively, and nmM denoting mass fraction of component M in phase m. Note that, for
every given phase m, the sum of nmM over all components is equal to 1 [10]. The
source term representing the injection/production wells is denoted by qM , and FM is
the overall mass ux of this component, equal to the sum

FM =
X
m

�mnmMVm;(2)

where Vm is the velocity of phase m. The de�nition of Vm comes from the momentum
conservation which is given by either Darcy's law

Vm = K
km

�m
(rPm � �mGrD);(3)
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or by Forchheimer law, or by some other non{Darcy equations extensions, [7]. Note
that Pm; km; �m denote the pressure of phasem, its relative permeability and viscosity,
respectively. K is a general permeability tensor, D denotes the depth and G is the
gravity constant.
The system is closed by adding capillary pressure relationships de�ning pressure

di�erence between phases as function of saturations. Additionally one requires that
the sum of all saturations be 1 and one adds an equation of state (constitutive law) for
each phase which speci�es the dependence of density �m on pressure and composition
nmM .
The general equations 1{3 are made speci�c for a given physical model adding

assumptions and simpli�cations. The notation as well as the units adopted are those
commonly used for such a model. Below we discuss three examples: �rst two{phase
models, then single{phase models and then black{oil models.

3.1. The two{phase model. We assume here that only two phases m = w; o;

are present and that they can be identi�ed with the components M = W;O (water
and oil). In other words, the uids are immiscible and so noW = nwO = 0 and
nwW = 1; noO = 1. We use NM = WM and UM = FM . The equations 1{3 simplify to

@(�NW )

@t
�r � UW = qW ;(4)

@(�NO)

@t
�r � UO = qO;(5)

UW = �wVw = �wK
kw

�w
(rPw � �wGrD)(6)

UO = �oVo = �oK
ko

�o
(rPo � �oGrD)(7)

Additionally, the pressures Pw; Po are related to each other by the capillary pressure
function Pcow = Po � Pw which is given as a function of saturation.
Although we speci�ed the above equations for an water{oil system, the same set

is used for an air{water model. What sets these apart is the equation of state. For
hydrology model it is assumed that both uid phases are slightly compressible, i.e.,
they are characterized by constant compressibility and reference density values. For
the air{water model, a simple gas law is used [11].
For the numerical solution, the set of di�erential equations for the hydrology model

4{7 is discretized in space and time. The latter, time discretization, takes two forms:
the implicit form, in which the resulting nonlinear system is solved for Po; NO, and
the sequential (IMPES) form. In the sequential formulation �rst a pressure equation
is solved for Pw and then a saturation equation is solved for Sw [15].
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3.2. The single{phase model. The single{phase model equations are a subset of
the two{phase equations. We assume that only one phase w and only one component
W are present. This makes the notion of saturation Sw obsolete with NW = �w and
the equation 4 is rewritten as

@(��w)

@t
�r � Uw = qW :(8)

Darcy's law is rewritten for single phase, since relative permeability is irrelevant:

UW = �wK
1

�w
(rPw � �wGrD):(9)

The uid is slightly compressible as in the two{phase model.
After discretization in space and time, the above system can be solved implicitely

or explicitely.

3.3. The black{oil model. The black{oil model is a three component / three
phase (water, oil and gas) system subject to the following commonly used restric-
tions [14, 17]: 1) the water component exists only in the water phase and it is the
only component in that phase, 2) the gas phase contains only the gas component and
may be absent if pressure is high enough, and 3) the oil phase may contain both oil
and gas components.
These restrictions imply

nwW = 1; nwO = 0; nwG = 0

noW = 0; noO + noG = 1

ngW = 0; ngO = 0; ngG = 1:

Further, we introduce reference densities �refw ; �refo ; �refg and de�ne the formation vol-
ume factors Bw; Bo; Bg as well as the solution gas{oil ratio Rs:

Bw =
�refw

�w
; Bo =

�refo

noO�o
; Bg =

�refg

�g
;

Rs =
noG�

ref
o

noO�
ref
g

:

The above is a common notation: the typical measurments of Bw; Bo; Bg and Rs

are given in the engineering literature [14, 10, 6]. Next, in order to use the stock
tank units, we divide the component equations by the reference densities and de�ne
NW = WW

�
ref
w

, NO = WO

�
ref
o

and NG = WG

�
ref
g

. Equivalently,

NW =
Sw

Bw

; NO =
So

Bo

; NG =
Sg

Bg

+Rs

So

Bo

:
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New source terms �qM = qm

�
ref
m

are de�ned. Also, we use

UW =
Vw

Bw

; UO =
Vo

Bo

; UG =
Vg

Bg

;

where velocities Vm are de�ned by 3. This implies

FW

�
ref
w

= UW ;
FO

�
ref
o

= UO;
FG

�
ref
g

= UG +RsUO:

In summary, the mass conservation for the black{oil model is described by

@(�NW )

@t
� r � Uw = �qW ;(10)

@(�NO)

@t
� r � UO = �qO;(11)

@(�NG)

@t
� r � (UG +RsUO) = �qG;(12)

with uxes and velocities de�ned as above.
The phase behavior in the black{oil model is described by the following criterion

involving the reservoir pressure. If the oil pressure is high enough (above the bubble

point), then all of the gas component is dissolved in the oil phase. If NG > RsNO, then
all three phases are present. Conversely, Sg = 0 and NG <= RsNO. Additionally, the
phase pressures are related to one another by capillary pressure relationships.
The set of discrete equations corresponding to 10{12 can be solved implicitely

or explicitely. The two black{oil models in IPARS are both implicit. One uses
Pw; NO; NG as primary variables and the other one uses Po; NO; NG.

4. DUAL FORMULATION

In subsurface modeling, there are many reasons for introducing grid discontinuities.
Local grid re�nement may be required near a well and geological faults and �ssures
produce discontinuities in the strata that must be matched by the grid.
In this section we describe an algorithm for calculating uxes between fault blocks

or subdomains with possibly non{matching grids. The equations described below deal
only with uxes between blocks having the same physical model but can be modi�ed to
treat interfaces between di�erent physical models. We de�ne the procedure assuming
non{matching grids on the interface between two fault blocks A and B. Let the
subscript a denote the index of an element in fault block A and b that of fault block
B. Recall from previous section that subscript m denotes phase m. We note from
Figure 1 that for each element a in block A, there may be several elements b in block
B that couple to element a. We de�ne the mass ux of phase m from element a to
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Block B

Block A

element b

element a

qm,ab
Aab

Figure 1. Mechanism of dual representation.

element b by

qm;ab = Tm;ab

�
Pm;a � Pm;b

�
1

2
G(�m;a + �m;b)(Da �Db)

�

where the transmissibility from element a to element b is given by

Tm;a =

�
�k

�

�
m;ab

Aab2

�
4xa

Ka

+
4xb

Kb

�
�1

(13)

Here the area shared by surfaces of elements a and b is denoted by Aab and the
distance from the center of the element a to the plane of the intersection of elements
a and b by 4xa.
Let the total ux from element a to block B be denoted by

qm;a =
X
b

qm;ab(14)

If we denote by �kj;a the primary variable j evaluated in element a at the Newton
iterant k and set

4�k+1j;a = �k+1j;a � �kj;a(15)

we obtain the Newtonian approximation for the intrablock ux as

qk+1m;a � qkm;a +
X
j

�
@qm;a

@�j;a

�k

4 �k+1j;a

+
X
j;b

�
@qm;a

@�j;a

�k

4 �k+1j;b :
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We remark that several elements b may be coupled to one element a, which can
complicate the matrix structure of the Jacobian. This can be avoided by making a
change of variable at the interface such that the regular structure of the Jacobian is
preserved. Details regarding this system will appear in a forthcoming paper.

5. COMPUTATIONAL RESULTS

In this section we present some computational results for the multi{block imple-
mentation in dual or mortar version. For simplicity, the implicit two{phase model
is used. We discuss accuracy and eÆciency of the two formulations for the multi{
domain case with the two{phase model. Multi{physics examples will be presented
elsewhere.
The results shown here are essentially the �rst such results presented for the dual

formulation. The intension of the comparison is to signal a trend rather than infer
about absolute applicability or eÆciency of either of the two formulations. In partic-
ular, the codes for the dual and mortar formulation have not yet been optimized for
parallel performance, i.e., highest accuracy at smallest cost.

5.1. Description of simulation cases. For the sake of comparison we consider
a a relatively small quarter �ve spot problem of dimensions 324' x 324' x 16'. The
wells are located at (1,1) and (323, 323) and penetrate through all vertical layers.
The vertical permeability is 200 md with a layer of 50 md of thickness 2' in the
middle of the reservoir. The ratio of vertical to horizontal permeability is .1. The
compressibility constants are 0.4000E-04, 0.3300E-05 for oil and water, respectively.
The reservoir initially is in hydrostatic equilibrium with an oil pressure of 500 psi and
a water saturation of 22% at the top of reservoir. The injection pressure is 510 psi
and it is dropped at production well initially to 480 psi and down to 350 psi at 30
days. The simulation of the waterood is 500 days: the water front arrives at the
production well around 300 days. Variable time steps from 1 day to 15 days are used.
Convergence tolerance for the Newton solver is chosen to keep material balances exact
to 5 or 6 signi�cant �gures.
Several spatial discretizations are considered with no special re�nement around

wells. Grids range from 6x6x8 (coarse) to 18x18x8 (medium), and 54x54x8 (�ne) for
the computational area. The multi{block cases include

A. single block case which serves as a basis for comparison,
D. three blocks with matching grids,
E. three blocks with nonmatching grids (grid in the middle block is o�set by half

of original gridblock size).

The pointwise values of primary variables as well as of pro�les of saturations etc.
can be obtained during the simulation by memory dumps at selected time steps. For
example, saturation pro�les at 500 days are shown in Figure 2. Note the e�ect of low
permeability layer in the middle of reservoir and the water front that has reached the
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SWAT: 0.29 0.39 0.49 0.59 0.69 SWAT: 0.29 0.39 0.49 0.59 0.69

Figure 2. Saturation pro�les at 500 days of simulation for medium
grid, case A (left) and E (right). Position of wells (injection and pro-
duction) is marked with arrows and interface is marked with dashed
line.

bottom of the production well. Also note the grids for multi{block cases D and E in
Figure 3.

Figure 3. Aerial projection of saturation pro�les at 500 days for
medium grid for case A (left), D (midddle) and E (right).

5.2. Comparison of results for mortar and dual formulations. The qualita-
tive information from the pro�les as seen above is quite instructive. However, for the
sake of comparison of mortar and dual formulation, it is diÆcult to use the pointwise
values especially for large cases and nonmatching grids. Instead, we use well output
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which is inexpensive to compute and which provides the essential information for a
reservoir engineer.
Note that the cases A and D should yield quantitatively the same results as A, as

the grid over the whole computational region is the same, and that the results for case
E should be close to those for A and D. On the other hand, when grids are re�ned,
the gridblock containing the well has di�erent dimensions for each re�nement case
and the Peaceman correction \moves" the well to the center of the gridblock where
it appears which has profound e�ect on well rates, see Figure 4.
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Figure 4. Injection rate (dotted) and water/oil ratio (solid) for case
A, various grid sizes: coarse (squares), medium (circles), �ne (trian-
gles).

The well rates for cases A, D, and E and medium grid are shown in Figure 5. Each
plot contains 5 distinct lines but they appear indistinguishable.
More precisely, when compared to the case A, the well rates for D using dual

formulation are identical. This is because for matching grids the fully discrete implicit
problem solved in case D is exactly equivalent to the problem solved in case A. Next,
the well rates for case E using the dual formulation show loss of some digits. The
di�erence between A and E for dual formulaiton is of maximum 20% for coarse grid
case, of no more than 7% for medium case, and about 1% for �ne grid case.
On the other hand, the mortar formulation requires outer interface and inner subdo-

main iterations as well as projections between the grids and the mortar grid. During
these operations, some digits are lost even in the case of matching grids. However,
high convergence of the mortar formulation makes the di�erence between A and D,
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Figure 5. Comparison of oil production rate (top), and water/oil ratio
(bottom) for cases A (squares), D (circles) and E (diamonds) for mortar
(solid) and dual formulation (dotted).

E small: the results show agreement to up to 0.3%, 0.1% and 0.05% for the coarse,
medium and the �ne grid case, respectively, between A and both cases D and E.
As concerns the computational cost, the dual formulation takes of no more than 20%

longer for case D or E relative to A. This makes the dual code much faster than the
mortar code which typically requires several subdomain solves and nontrivial interface
preconditioners. However, the mortar formulation allows for di�erent type of mortar
grids, which determine the accuracy as well as the eÆciency of the computations. The
results discussed above were obtained with the �nest mortar grid available. However,
if the goal were to meet the accuracy attained by the dual, the execution time could
be cut down by choosing a coarser mortar grid.
The agreement discussed above for both formulations is suÆciently close for prac-

tical purposes. This is in view of the inuence of the gridblock size over well rates as
demonstrated in Figure 4.

6. CONCLUSIONS

A distributed computing portal for modeling multi{domain multi{phase ow has
been described. Computational results using this framework have been presented in
these proceedings and elsewhere.
The results of the simulation exhibit convergence for both dual and mortar formula-

tion even on coarse grids. These approaches show promise for modeling multi{domain
multi{physics applications.
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