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Abstract

In mortar space upscaling methods, a reservoir is decomposed into a series of subdomains (blocks)
in which independently constructed numerical grids and possibly different physical models and dis-
cretization techniques can be employed in each block. Physically meaningful matching conditions
are imposed on block interfaces in a numerically stable and accurate way using mortar finite ele-
ment spaces. Coarse mortar grids and fine subdomain grids provide two-scale approximations. In
the resulting effective solution flow is computed in subdomains on the fine scale while fluxes are
matched on the coarse scale. In addition the flexibility to vary adaptively the number of interface
degrees of freedom leads to more accurate multiscale approximations. This methodology has been
implemented in the Center for Subsurface Modeling’s multiphysics multiblock simulator TPARS
(Integrated Parallel Accurate Reservoir Simulator). Computational experiments demonstrate that
this approach is scalable in parallel and it can be applied to non-matching grids across the interface,
multinumerics and multiphysics models, and mortar adaptivity. Moreover unlike most upscaling
approaches the underlying systems can be treated fully implicitly.

1 Introduction

A novel multiblock mortar methodology for modeling complex multiphysics phenomena occurring in
energy and environmental applications allows for coupling different physical processes and different
time discretizations in a single simulation [32]. This is achieved by decomposing the physical
domain into a series of subdomains (blocks) and using independently constructed numerical grids
and possibly different discretization techniques in each block. Physically meaningful matching
conditions are imposed on block interfaces in a numerically stable and accurate way using mortar
finite element spaces.
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In this paper we establish a close connection between the mortar methodology and some recent
upscaling procedures often referred to as subgrid-scale modeling [26, 35, 2] which treat linear steady—
state or linearized transient problems. The motivation for these formulations is that fine scale
features are often numerically unresolvable on practical finite element meshes. In [26], the original
problem is decomposed into two subproblems. First, fine scales are solved in terms of the coarse
scale using numerical Greens functions. Second, a coarse scale problem is solved after incorporating
the fine scale information into the coarse scale basis functions. A similar approach is taken in [35]
for modeling heterogeneous structures and in [5, 2] for modeling flow in porous media. The relation
of subgrid modeling to stabilized finite element methods is discussed in [14].

The subgrid modeling can be viewed as an alternative to the classical upscaling problem for flow
in porous media. In the latter the permeability field is given on a fine scale. Effective parameters are
computed on a coarse scale and then used to carry out coarse scale flow simulations [20, 15, 13, 1].
The connection between the subgrid modeling and the mortar approach can be established as
follows. In the mortar framework the coarse grid is defined by the subdomain decomposition (i.e.,
each subdomain is an element of the coarse grid). The fine grid is the union of local subdomain
grids. Note that this formulation allows for the fine grids to be non-matching from one coarse
grid element to another. If the mortar space for matching fluxes across subdomains is chosen to
counsist of a single (bi)linear mortar function on each coarse edge (face), see Figure 1, then the
resulting solution may be thought of as an effective coarse grid solution which incorporates local
(subdomain) fine grid information. We call this approach mortar upscaling. Unlike in traditional
upscaling techniques, no effective parameters need to be computed. The computed solution is very
similar to the one produced by the subgrid modeling method [2]. Our solution algorithm is based
on solving a mortar interface problem (see Section 2) and is therefore different from the algorithm
employed in [2]. Some of the advantages of our approach are described below.
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Figure 1: Two-scale discretizations.

One advantage of the mortar interface formulation is that it provides the flexibility to adaptively
vary the number of mortar degrees of freedom. As we show in our examples in Section 5.1, finer
mortar grids provide better accuracy [55, 3], while coarser mortar grids lead to easier to solve
algebraic problems [54, 43, 44]. The limiting case of using coarsest mortar space described above is
the least expensive to solve. In highly heterogeneous large variation problems, however, it may be
necessary to use finer mortar grids in parts of the domain for better flow resolution. A natural way
of measuring the mortar upscaling error is to compute the flux jump in a finer mortar space. This
can be used as an error estimator for adapting the mortar grids. The approach is closely related to
some other techniques for hierarchical modeling of heterogeneous materials [58, 25]. Our numerical
tests in Section 5.2 indicate that, with proper adaptivity, the increase in computational cost is only



a fraction of the increase in the solution quality (measured by well rates, for example). The ability
to measure the mortar upscaling error and to adaptively account for it provides an advantage to
standard upscaling methods where the upscaling error is often difficult to estimate.

Some further advantages of the mortar formulation are demonstrated by the numerical exper-
iments in Sections 5.3 and 5.4. In particular, it is shown that substantial computational savings
can be achieved without sacrificing accuracy by appropriately choosing different physical models,
(possibly non-matching) local grids, and different numerical methods on different subdomains.

The outline of the paper is as follows. In Section 2 we briefly describe the single, two—phase,
including both the sequential and fully implicit approach, and black—oil model formulations. In
Section 3 we formulate the multiblock multimodel technique, including subdomain and mortar
interface algorithms for multiphase flow. In Section 4 we describe the computational framework
called TPARS (Integrated Parallel Accurate Reservoir Simulator), which has been employed in
our mortar upscaling studies, and we show parallel scalability of the multiblock implementation.
Computational studies which illustrate the flexibility of our mortar upscaling approach are discussed
in Section 5. Here we discuss mortar adaptivity, the coupling of explicit and implicit models, and
the coupling of different physical models. In Section 6 conclusions and extensions are presented.

2 Multiphase model formulation

In this section we briefly recall the conservation equations, constitutive laws and time discretization
techniques. Our main focus is on the two-phase (water and oil) flow model in implicit and sequential
form. Additionally, we consider an implicit three-phase (water, oil, and gas) black-oil model and
an implicit single-phase (water) flow model which are used in multiphysics examples in Section 5.4.
Here the porosity ¢ and permeability tensor K are spatially varying and constant in time reservoir
rock data. Other rock properties involve relative permeability and capillary pressure relationships
which are given functions of saturations and possibly also of position in the case of different rock
types. The well injection and production rates are defined using the Peaceman well model [39]
extended to multiphase and multicomponent flow, and they describe typical well conditions for
pressure or rate specified wells.

Let the lower case subscripts w, o, and g denote the water, oil and gas phases, respectively, and
the upper case subscripts W, O, and G the flowing components: water, heavy hydrocarbon or oil,
and light hydrocarbon or gas, respectively.. The corresponding phase saturations are denoted by
Sws S0, and Sy, the phase pressures by P, P,, and Py, and component concentrations by Ny, No,
and Ng. The well injection / production rates of the components are denoted gw, g0, qG-

Consider first the two—phase immiscible slightly compressible oil-water flow model in which
concentrations and densities of oil and water phase are given by Ny = Sppm = Smp:,ff ecmPm for
each component, M = O, W, identified with a phase m = o, w, respectively. The discrete—in—time
implicit mass conservation equation and Darcy’s law are

(¢Nar)™ — (¢Nur)"
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The single-phase model which describes the (saturated) flow of a (slightly compressible) fluid
(water=aqua) may be considered as a special case of the two—phase system (1)—(2) with S, = 0.
On the other hand, the system (1)—(2) can be extended to the black—oil model [31, 33]. See also
[38, 30, 45, 16, 48, 21, 34, 11]. In the black—oil model in addition to water and oil there is a gas



component with Ng > 0 which is dissolved in the oil phase. In addition at lower pressures there
may exist a gas phase with S; > 0. Here, the oil phase density depends on the pressure and on the
amount of gas and we use the fluid-reservoir dependent formation volume factor B, of phase m so
that (if appropriate units are used) Darcy’s law is now written as

K k n+1
Ut =2 (5) (VR - 6T D), )
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Note that the oil phase flux U, is composed of the oil component flux Up and of the gas component
in oil phase flux. The total gas component is composed of the gas component in the gas phase and
of the gas amount dissolved in the oil phase. The latter is proportional to the oil concentration
with proportionality constant R, which is controlled from above by the pressure dependent solution
gas—oil ratio at saturated conditions Ry, given as reservoir data. The mass conservation equations
for oil and gas components in the black—oil model are
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Additionally, the system satisfies a volume constraint; namely, that the sum of the saturations
equals one. Additional constitutive relations involve the capillary pressure relations

Pcow(Sw):Po_Pw (6)
cho(Sg) = Pg — F,. (7)

The space discretization of all these models is based on mixed finite element methods reduced
to cell-centered finite differences (see Section 3.2 for details). The time discretization for all the
above models is implicit, namely backward Euler. The models use different primary unknowns:
black—oil model uses P,,, No, Ng as primary unknowns, the two—phase model uses P,, No and the
single—phase uses P,,. The nonlinear or quasilinear system of equations arising in some models are
solved by the Newton method, and the Jacobian equation is solved by one of a suite of iterative
solvers capable of handling non—-symmetric and non—positive systems arising from the Jacobian, for
example GMRES, with sophisticated two-stage preconditioners [18, 22, 29]. The Newton method
stops when the residuals are less than a given tolerance e.

The fully implicit formulation is unconditionally stable and permits the use of large time steps
which may vary adaptively while keeping the error in mass conservation to minimum with a small
€. A major disadvantage of the fully implicit method is the complexity of the Newtonian iteration,
which may be costly. Other formulations known as IMPES (implicit pressures, explicit saturations)
are attractive alternatives [7]. Related are methods of total pressure [38] or streamlines—streamtubes
[8]. Most rely on the splitting of the model equations into the time lagged (formally) elliptic part
and the parabolic-hyperbolic part. Some of difficulties which arise in these approaches involve
treatment of compressibilities and of varying well patterns, and the stability and accuracy of the
splitting.

In the IPARS two—phase sequential model we use the splitting which goes back to [19], where
different time steps were proposed to be used for the pressure and for the concentration equations.
The primary variables in this formulation are water pressure P, and saturation S,. The first
equation defines the value of water pressure at the new time step Pg"'l as a solution to the problem

—V - (KN} (VP = V- (KNI'VP(SL))
= V- (K(A505 + Aypy)GVD) (8)
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where the oil, water, and total mobilities are A\, = %, Aw = Z—z, and A\; = A\, + Ay. This equation

arises after the mass conservation equations for two phases are added and discretized in time. For
simplicity, we omit the well terms. Also, compressibility of the fluids is essentially ignored in the
pressure equation and only accounted for in the saturation equation to follow. Using the values of
P+l the densities, the phase velocities or volumetric fluxes u,,u, defined by U,, = ppmum, and
the total velocity u; = u, + uy are computed. Then the saturation equation
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is solved for S, The time step At5, for the saturation may be much smaller than the pressure
step or, alternatively, pressure solution can be skipped and redone only every K saturation steps,
with K as large as 100. The saturation time step is limited by the CFL-type stability condition

%ﬁ—i < 1 on the time and spatial discretization steps At, Az in terms of the velocity v and porosity

¢.

The resulting set of two separate fully discrete equations (or more, if multiple saturation steps
are used) is solved each by a simple iterative linear solver like Preconditioned Conjugate Gradient
(PCG) for symmetric positive definite systems. Since the system (8)—(9) is effectively a linearized
version of (1)—(2), the computational cost per time step is much lower, but again, the time step
may be severely restricted for reasons of accuracy and stability.

3 Mortar interface couplings for multiphase flow

In this section we describe the coupling of the models from the previous section in a multiblock
formulation. We assume that the simulation domain © C R?2, is decomposed into a series of
subdomains (faultblocks, blocks) Qi, k = 1,...,mp. Let T'y; = 0Q N 92 be the interface between
and €2;. A physical model is associated with each block.

This domain decomposition formulation for mixed methods stems from the classical paper [24]
and was extended to the non-matching grids with mortar spaces in [3].

3.1 Interface and boundary conditions

On each interface I'y; the following physically meaningful interface continuity conditions are im-
posed:

Pulo, = Pmlo, on Ty, (10)
[UM-I/]klE UM|Qk -I/}C—f-UM‘Ql -y =0 on Ty, (11)

where v denotes the outward unit normal vector on 9€. Equations (10) and (11) represent
continuity of pressures and normal fluxes, respectively (the plus sign in (11) is due to the opposite
orientation of the normals on the two subdomains and [-] denotes the jump). The sets of phase
indexes m and component indexes M for which the above conditions are imposed depend on the
physical models imposed on the neighboring blocks. In particular, let I'' be the union of all
interfaces for which at least one of the neighboring subdomain models is single-phase, let I'? be the
union of all “two-phase/two-phase” and “two-phase/black-o0il” interfaces, and let I'® be the union
of all black-oil/black-oil interfaces. The equations (10) and (11) then hold for m = w and M = W
on T'!, for m = w,0 and M = W, O on I'?, and for m = w,0,g and M = W, 0, G on I'3.



We assume for simplicity that the no flow condition Ups - v = 0 is imposed on 02, although
more general types of boundary conditions can also be treated, see [42].

Note that the above conditions lead to well posed systems only when all relevant phases are
present. Otherwise, some other interface conditions involving variables other than pressures must
be imposed. This occurs, for example, in the black-oil model in two-phase conditions: if the gas
phase is absent but the gas component is present and it is dissolved in the oil phase (undersaturated
conditions), then the interface conditions must involve gas concentration instead of gas pressure.
This is because the gas pressure in such conditions is a simple translate of oil pressure at the residual
gas saturation. A general and detailed discussion of such conditions is given in the forthcoming
paper [32].

3.2 Multiblock discretization

The discretization in space is achieved through the use of the lowest order Raviart-Thomas mixed
finite element spaces RT [46] on a rectangular partition 7, of Q, where hy, is associated with the
size of the elements. The RT( spaces are defined on 7, by

Vi, = {v = (v1,v2,v3) : v|p = (m121 + B1, maw2 + Po, maz3 + B3)" :

my, B € R for all E € T, ,
and each v; is continuous in the /th coordinate direction},

th:{’UEth:’l)-l/k:()onagkﬂaﬂ},
Wi, ={w:wlgp=m:méeRforall E €T}

To impose the interface matching conditions (10)—(11) we introduce a Lagrange multiplier or
mortar finite element space (see [12, 9] for the standard finite element formulation). The mortar
spaces technique is capable of handling non-matching grids across the interface. Mortar mixed
finite element methods have been studied for elliptic problems in [55, 3] and for the Stokes problem
in [10]. Optimal convergence is also shown for the case of a degenerate parabolic equation arising
in two—phase flow in porous media [56]. Multinumerics and multiphysics applications can be found
in [43, 44, 31, 41, 32].

The mortar finite element space M}, is defined on a rectangular grid 7p,, on I'y;, where hy; is
associated with the size of the elements in 7j,,. In this space we approximate the interface pressures
and concentrations, and impose weakly the continuity of normal fluxes.

If the subdomain grids adjacent to I'y; match, we take 7j,, to be the trace of the subdomain
grids and define the matching mortar space by

My, ={p:ple=m:meR, foralle € Ty, }.

If the grids adjacent to I'y; are non-matching, the interface grid need not match either of them.
A mild condition on 7j,, to guarantee solvability and accuracy of the numerical scheme must be
imposed (see Remark 3.3). We define our non-matching mortar space on an element e € 7p,, by

M (e) = {m&é&s + BéL + 72+ 6 :m, B,7,6 € R},

where & are the coordinate variables on e. Then, for each T'y;, we give two possibilities for the
non-matching mortar space, a discontinuous and a continuous version, as

Myt = {p: ple € Mji(e) for all e € Tr, },
M,:L;lc = {p: ple € Mf(e) for all e € Ty,,, p is continuous on 'y }.

We denote by Mp,, any choice of M, ,?k’ji, M ,?;lc, or M, ;L’;l (on matching interfaces).
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3.3 A mortar mixed finite element method for the implicit two-phase model

Here we describe the multiblock mortar formulation of the implicit two—phase model as given by
Equations (1)-(2). The other models are discretized similarly. We omit the details.

We employ a variant of the mixed finite element method, the ezpanded mized method following
[6]. It has been developed for accurate and efficient treatment of irregular domains (see [6, 4] for
single block and [55] for multiblock domains). In the context of multiphase flow this method allows
for proper treatment of the degeneracies in the diffusion term (see Remark 3.1). See also [42].

For m = w, o we define

Uy = —V P,
Then e K
Un = —— 0 (Up + pmGV D).
Hm
The implicit in time equations on a subdomain € at the time ¢, are solved for U,:HT;H 2% € Vo
Uitta, € Vi, Prtlla, € Wiy, Nibila, € Why, and Pyt p, € My, which satisfy, for
1<k<i<ny, M=0,W, and m = o, w,
N n+1l _ N, n
/ ($Nna1) 1(¢ ) wdr — V-U}’Zj’nlwdm :/ gmwdz, w € Wy,, (12)
Qp, Agrt Qg ’ Qp
/ Urtl . vdz :/ PPV v dz —/ Py yp do, v €V, (13)
Q) QO an\o
kMK . .
/ Urt g d — / I T bl @l | v Gy D) G di, § € T, (14)
Qk ’ Qk Hh,m ’ ’ ’
[U,?’—:nl . V]klp,da =0, pue thl' (15)
T

Remark 3.1 Introducing the pressure gradients Uy, in the expanded mixed method allows for
proper handling of the degenerate (for S,, = 0) relative permeability k,(Sp,) in (13)-(14) (the
edge values are computed by upwinding). It also allows, even for a full permeability tensor K, for
accurate approximation of the mixed method on each subdomain by cell-centered finite differences
for P, and Np. This is achieved by approximating the vector integrals in (13) and (14) by a
trapezoidal quadrature rule and eliminating ﬁh,m and Uy, ,, from the system [6, 4].

Remark 3.2 The usual piecewise constant Lagrange multiplier space for RT( leads to only O(1)
approximation on the interfaces in the case of non-matching grids. With the above choice for
mortar space, optimal convergence and, in some cases, superconvergence is recovered for both
pressure and velocity (see [55, 3] for single-phase flow and [56] for incompressible two—phase flow
in global-pressure formulation).

Remark 3.3 A necessary condition for solvability of the scheme is that, for any ¢ € My, ,,

Qhie = Qnip=0=> ¢ =0, (16)

where @y, i is the L?-projection onto Vh, - vk- This condition requires that the mortar grid is not
too fine compared to the subdomain grids and is easily satisfied in practice (see [55, 3] for details).



3.4 Reduction to an interface problem

For simplicity consider two blocks A and B with interface I. In the multiblock multimodel approach
we can assign one model to the domain (block) A and possibly a different model to the block B.
We seek the interface values of the primary unknowns or primary variables on I such that the
fluxes of components match in a prescribed weak sense as in (15). The choice of the primary
unknowns on the interface is problem dependent and it is motivated by the convergence properties,
computational efficiency or coding convenience, see [41, 43, 31]. Note that any given set of interface
primary unknowns can match or not match the set of subdomain primary variables in block A or
block B.

For notational convenience in the discussion below, depending on the context, we will understand
as “values” the values of primary unknowns (denoted by A) or the values of their projections into
suitable spaces. A similar convention applies to the values of the mass component fluxes denotes
by Fluxps across I outward to subdomains, respectively, and to their jump across I denoted below
as B(A). Furthermore, the interface problem B(A) = 0 is understood in a weak sense, as in (15).
See [3, 56] and references therein for details.

Consider now the case that both blocks A and B are assigned the two—phase model. Use (P,, Np)
as the interface primary variables. Some restrictions apply, see [41, 43, 31]. The goal of the interface
algorithm is to find, at every time step ¢,1, the interface values A = A" = (P, o+l N(*)’nH) SO
that

B(A) = |Fluz) — Fluz®| + |Fluz}) — Fluz3| =0
or, practically,
B(A) <¢, (17)

where ¢ is some prescribed (interface) tolerance and |- | is a suitable norm.

The interface operator B(A) is a Dirichlet—to-Neumann map. Its evaluation requires the solu-
tion in parallel of subdomain problems with Dirichlet data A or solving (12-14), given the current
guess A"T! = (P;’nH,Ng’"H) with

M,n+1 _ *,m+1
Po |I - Po ’

PwM,n—I—1|I — P:,n—l—l_Pc(SZ;n—}-l).

where the value Si;"! is found from the capillary pressure relationship (6). Once the subdomain
problem is solved, the normal fluxes of oil and water Fluxf, Fluxé, FluzB, FluzB across I outward
to A and to B, respectively, are computed and B(A) can be evaluated.

Note that each of the blocks can be assigned either the two—phase implicit model or the se-
quential model. In the latter case, one needs to find a map from the set of primary unknowns on
the interface A™*! = (P ’nH,NS’"H) to the set of primary unknowns in the subdomain for the
sequential algorithm (P5" "', 5" ). This may be delicate, see [43].

Finally, the problem B(A) = 0 can be solved by various solvers appropriate for general nonlinear
problems. In the results reported in this paper we use the inexact Newton—Krylov method for which
the Jacobian B’(A)S is approximated by a finite difference and the equation to be solved in an
interface Newton step is

_B(A+0S)-B(A)

B'(A)S ~ - = —B(A), (18)




see [51]. Several parameters determine the efficiency and convergence of this technique; see [23,
27, 28]. For lack of space we only comment on the optimal choice of ¢. For the multiblock
implicit scheme where all subdomain solvers are fully implicit the values of o are controlled by the
subdomain tolerance €, and we used o ~ 10~% or less with € ~ 1071°. For the multiblock sequential
scheme the optimal values, in the absence of e, were rather large (=~ 10~*). Therefore it is hard
to choose a “perfect” o for multiblock coupling of implicit and sequential models. However, the
fully implicit interface solution of the problem B(A) = 0 by inexact-Newton may not be optimal
for such couplings; see remarks in Section 5.3.

4 Implementation

The physical models described above are built in IPARS framework [36, 49, 51, 52, 50, 53], which
handles general input/output, memory management, grid generation, visualization, parallelism,
etc. The code for interface algorithm has been merged with the framework. The framework can
have multiple (fault) blocks (or subdomains), each of which may have associated its own physical
model. The neighboring blocks are connected via an interface. The values of primary variables and
fluxes are projected back and forth between subdomains and interface and the subdomain solvers
with Dirichlet data are executed until the fluxes from the two sides match to a given tolerance.
Unit conversion between different models may be necessary during projection. The near optimal
scalability of IPARS black-oil model is demonstrated in [52].

For the subdomain cells adjacent to the interface, the Dirichlet boundary condition is applied
using values of primary variables delivered by the interface code. Transmissibilities, mobilities,
fluxes, etc. are computed and stored. The Dirichlet condition is applied to the Jacobian and
residuals of the discrete system.

The linear solvers for different physical models can be either different or the same. A parallel
GMRES solver has been extended for solving multiple models simultaneously. The basic idea for
the extension is to expand the work space from a scalar to an array, so that each model has its own
entry of work space.

The parallelism is the most delicate and interesting issue to tackle. The extension to mutliblock
is handled by MACE interface [37], and the code scales very well; see results below. For multimodel,
in contrast to the traditional single model simulator, we need to use the MIMD (multiple instruction
multiple data) paradigm. Here we use multiple MPI communicators [47, 43, 33].

—@—— myrinet, time
— —#- - ethernet, time
—@— myrinet, speedup
— -~ll— - ethernet, speedup

speedup

Figure 2: Parallel scaling of multiblock cases. Shown are total computational time [sec] and
speedup.



Parallel scalability of the multiblock implementation. To test the paralell scalability,
we consider waterflood in a relatively small reservoir 324x324x16 [ft] so that breakthrough occurs
at about 350 days. The permeability field is layered with vertical permeability Ky = 20[md]
everywhere except in the middle layer of Ky = 5[md]; ratio Ky /Ky = 10; for other parameters see
the Appendix. The waterflood simulation with one injection and one production well proceeds up
to 500 days with variable time steps up to 15 days. The grid used in this study is medium—coarse,
and it is 54x54x8, which gives the total of around 23K cells which are evenly divided between
3 blocks=domains. The case is run on a parallel Linux PC cluster with a different number of
processors between 1 and 9 and using either standard Ethernet network or a high speed Myrinet
switch. This results in the computational time and the calculated parallel speedup as shown in
Figure 2. Speedup here is defined as the ratio of computational time on 1 processor to computational
time on n processors with linear (ideal) speedup equal to n.

The results demonstrate that the multiblock code scales extremely well, and that it even achieves
superlinear speedup in the case of Myrinet runs. This latter effect is due to the small communication
costs and to the local caching of data which is not available in a single processor case because of the
limited cache size. The decrease of efficiency with growing number of processors in the Ethernet
case is a typical phenomenon which occurs because of fixed problem size and computation to
communication costs (Amdahl’s law). Of course, for cases larger than this one, the deterioration of
speedup occurs for number of processors larger than here. We note that the notion of scaled speedup
which is used in parallel testing of linear problems does not really apply to reservoir simulation, as
the problem itself changes if the size and well placement change.
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Figure 3: Fully implicit two—phase homogeneous case. Left: water saturation profiles after 961
days of waterflood for 9 blocks. Right: well rates. Used a fixed value of ¢ = 0.1.

5 Numerical examples.

In this section we discuss how various choices of a) multiblock and model decompositions, b) mortar
grids, and c) convergence criteria, affect the accuracy and efficiency of computations.

Clearly the efficiency of the multiblock procedure is dependent on the choice of interface pre-
conditioners. In the case of single-phase flow, balancing preconditioners [17, 40] have been shown
to be “essentially optimal”; here the condition number depends on the log(1+ H/h) where H is the
subdomain size and h is mesh size. Thus for large problems domain decomposition scales linearly
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as the number of processors increases. Efficient preconditioners applicable to nonlinear problems
associated with multiphase flow are a subject of current research [57] and are not yet available at
this time. However, as we show below, the mortar multiblock technique offers flexibility in the use
of different numerical and physical models and in addition it allows for mortar adaptivity. These
features result in substantial savings in computational time.

5.1 Upscaling with varying number of blocks and of mortar degrees of freedom

Our basic example here is a three-dimensional quarter—five—spot problem on a 315 x 315 x 27[ft]
field with injection and production wells located close to lower left and upper right corners at around
(16,16) (injector, 18[ft] of open interval) and at (299,299) (producer, 27 [ft] open interval). Porosity
is uniform and is equal to 0.2. Both oil and water are viscous and compressible, see Appendix. The
pressure gradient between the wells is initially at 30[psi] and it increases to 260[psi] at 30 days. First
we study a simple homogeneous case whose purpose is to explain certain ideas about the mortar
multiblock approach which are common to homogeneous and heterogeneous cases. The use of a
homogeneous permeability field results in relatively smooth pressure and saturation fields which
allow us to focus on the features of mortar multiblock approach rather than on the local behavior
typical for heterogenous cases. The next example is heterogenous with coarse scale heterogeneity:
here the permeability field resembles that of a fractured reservoir. In this example we show how,
for two choices of the number of blocks, various choices of the number of mortar degrees of freedom
and of convergence criteria affect the accuracy of computations and their efficiency.

# blocks / # mortar || computation values at 500 days breakthrough
degrees time water inj. | oil prod. | water / oil | time for water/oil
of freedom (1000 days) | rate rate ratio ratio=0.1

1/- 1.0 44.74 42.95 0.0056 543.692

4/16 1.54 44.87 37.88 0.193 503.17

9/48 3.6 44.76 40.01 0.132 520.308

25/160 2.046 45.58 41.75 0.0835 532.15

36/240 1.44 45.99 41.99 0.075 534.509

Table 1: Homogeneous case: well results and computation time over 1000 days normalized to 1
block solution.

5.1.1 Homogeneous case

Here the permeability field is homogeneous with horizontal permeability equal to Ky = 100[md] and
the vertical equal to Ky = 10[md]. With this, the breakthrough occurs at 500 days of waterflood,
and the water/oil ratio reaches 3 at around 1000 days, see Figure 3. The grid over the computational
domain in this example is uniform, and it is 90x90x9 which totals 72900 cells. The domain is divided
between 4, 9, 25 or 36 blocks, or we use the traditional 1 block setup. On each interface between
any two blocks we use piecewise linear mortars on a 1x1 mortar grid, see Table 1. Note that,
while mass is conserved regardless of what mortar grid is used, the averaging procedure used in the
projections between mortar grid and subdomain grid may lead to some local loss of accuracy. In
addition, since Newtonian interface iteration is solved only up to a certain tolerance ¢ as in (17),
additional accuracy may be lost. In this example, we use £ = 0.1.
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Figure 3 shows saturation contours at time well after breakthrough obtained with the decom-
position to 9 blocks as well as the well profiles for 1,4,9,25,36 blocks. Some of the well results are
summarized in Table 1, which additionally contains the associated computation time.

First, we discuss saturation contours. These exhibit local differences: note the higher water
saturation values in the lower left corner of the production well block, which give an appearance
of local heterogeneity but which are really a numerical artifact arising because of the averaging
process onto the relatively coarse mortar grid. This phenomenon becomes less significant as the
number of blocks grows and as, consequently, the mortar grid matches more closely the subdomain
grid (for brevity, we do not show pictures for number of blocks other than 9).

There arises a question of the significance of this (local) loss of accuracy. Its impact on well
rates is not profound, as can be seen in Figure 3 and in Table 1. In particular, engineers may be
concerned not with the pointwise pressure or saturation values but rather with well rates which can
be translated into economical value of recovery. These well rates clearly show the “convergence”
of the case with a growing number of mortars to the single-block case which can be considered
as a reference case. In addition, we see that this “convergence” comes at a cost, as the increased
number of blocks / mortars requires more computation time.

In summary, the case with largest number of blocks appears to be most accurate and efficient
even though, with today’s technology, it is not yet faster than a single-block solution. On the other
hand, it offers a tremendous field for adaptivity, some of which will be discussed below.

Figure 4: Heterogeneous case (fracture): permeability field (left) and water saturation contours
after 1000 days of simulation for 1 block solution (right).

5.1.2 Heterogeneous case

In this example we consider a heterogeneous permeability variant of the case above in which most
of the waterflood follows the S—shaped “fracture” and the rest goes across the field, see Figure
4. The permeability contrast is characterized by factor 40.: all cells in blocks belonging to the
“fracture” have horizontal permeability of 200[md] and the others of 5[md]. The ratio of horizontal
to vertical permeability is Ky /Ky = 10. For other parameters, see Appendix. Breakthrough in
the heterogeneous case occurs later than in the homogeneous case, around 750 days.

Here we use a grid 30x30x3, which is divided evenly either between A) 4 or between B) 25 blocks.
While the decomposition in case B is aligned perfectly with discontinuities, the decomposition in
case A is not and it can be regarded as the “worst scenario”. Furthermore, we use different mortar
grids on the block interfaces, and we study the influence of the mortar discretization as well as of
the convergence criteria on the quality of the solutions when compared to the traditional 1 block

12



Figure 5: Heterogeneous case (fracture): water saturation contours after 1000 days of simulation.
Case A (4 blocks, 1x3 mortar grid) with £ = 0.1 (left), and £ = 0.001 (middle). Case B (25 blocks,
1x1 mortar grid) and & = .1 (right).

solution. Results are shown in Table 2 and Figure 6 which show well rates and computation time.
In addition, contours of saturation projected onto the top plane are shown in Figure 4 for the 1
block solution and in the Figure 5 for cases A and B. Note the discontinuity of profiles across block
interfaces which arises from a combination of projection of 3D contours onto the 2D plane and
from rendering of contours separately in each block. The former phenomenon is visible also for the
1 block case. The latter effect which only appears for multiblock can be overcome possibly with
sophisticated post-processing tools which are not available to us at this time. It also becomes less
significant for finer subdomain grids.

# blocks / # mortar || computation values at 500 days breakthrough
degrees of freedom time water inj. | oil prod. | water / oil | time for water/oil
(mortar grid) (1000 days) | rate rate ratio ratio=0.1
1/- [ - [26.031 | 24.7759 | 0.050711 | 882.923
4/32 (1x3) £ = 0.1 1.0 26.955 25.652 0.050715 873.399
4/32 (1x3) £ =0.01 || 2.39 26.953 25.653 0.050703 868.686
4/32 (1x3) £ =0.001 | 2.59 26.953 25.653 0.050703 868.972
4/32 (1x3) £ = 0.0001 || 4.96 26.953 25.654 0.050703 868.972
4/48 (1x5) £ = 0.1 1.18 26.030 24.774 0.050722 887.2
4/48 (1x5) £ = 0.01 || 2.73 26.031 24.775 0.050711 884.366
4/132 (2x10) £ =0.1 || 1.91 26.032 24.7759 | 0.050712 884.5
4/132 (2x10) £ =0.01 || 2.91 26.032 24.777 0.050711 884.098
25/160 (1x1) 1.18 26.15 24.83 0.050903 888.315
25/240 (1x1,2x2) 1.768 26.107 24.81 0.050571 883.055
25/360 (2x2) 1.67 26.07 24.77 0.050594 885.582

Table 2: Heterogeneous case (fracture): well results and computation time over 1000 days.

The choice of mortar grid 1x1 corresponds here to 10 times more degrees of freedom in case B
than in case A. This does not yield sufficient resolution in case A and may lead to 20% difference in
well rates. Therefore the coarsest grid for A in this experiment is chosen to be 1x3. In addition, the
location of mortar interfaces in these two cases is different: in particular it is more “natural” in case
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Figure 6: Heterogeneous case (fracture): comparison of well rates. Left: decomposition into 4
blocks with mortar grid 1x3 and with varying £. Right: 4 and 25 block solutions for different
mortar grids and with £ = 0.1 compared to 1 block solution.

B, as the interfaces in this case are alligned with material discontinuities. For case B, we consider
three different mortar grids: i) coarse 1x1 mortars, ii) fine 2x2 mortars and iii) intermediate case
in which the grid 1x1 is used on “low velocity” interfaces and the grid 2x2 is used on interfaces
between high permeability blocks. It is then interesting to see how the results change with different
numbers of degrees of freedom in each case. Moreover, we investigate the effect of varying the
tolerance of the interface solver on the quality of the solutions.

Let us now briefly discuss the presented results. First, it is clear that in spite of significant
differences in saturation profiles between case B and the 1 block solution as seen in Figure 5, this
decomposition into twenty five blocks offers high accuracy of well rates at relatively low cost, as
seen in Table 2. In addition, the coarsest mortar grid in this case provides enough resolution to
achieve good agreeement between well rates. On the other hand, the mortar grid for case A must
be chosen very carefully, since the quality of the results is critically dependent upon it, as shown
by well rates. In addition, the convergence tolerance must be chosen appropriately: the saturation
contours shown in Figure 5 for case A with a small &, resemble 1 block solution better than those
for case A with large £&. Correspondingly, the material balances (not shown) for these two cases
are correct to three significant digits for ¢ = 0.1 and to seven digits for £ = 0.0001. However, the
obtained well results do not differ significantly, but the computation cost is dramatically different.
For case A, if about 4% discrepancy in well rates is acceptable, then it’s advisable to use 1x3 mortar
grid. Otherwise, one should use 1x5 mortar grid and £ = 0.1.

In summary, this case shows that one can upscale the single-block solution by choosing a proper
block decomposition which at best should be aligned with heterogenities, and by using a relatively
coarse mortar grid as well as liberal convergence criteria. In general, one can come up with an
optimal decomposition and with optimal values of other parameters; however, such a selection is
beyond the scope of this paper. An adaptive selection of mortars is discussed in the next Section.

5.2 Mortar adaptivity for a highly heterogeneous case

In this example we study the accuracy and efficiency of the mortar upscaling technique applied to
modeling flow in a highly heterogeneous reservoir. The permeability field is based on a model from
the SPE Comparative Solution Upscaling Project (http://www.pet.hw.ac.uk/research/csp/data-
sets/set02.htm). Oil-water displacement is simulated in a horizontal cross-section with dimensions
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Figure 7: Permeability field for the highly heterogeneous example.

1200 x 2200 [ft] at the bottom of the fluvial (Upper Ness) part of the reservoir. The fine grid
(60 x 220) permeability (given in Figure 7) has a mean value of 554 [md] and varies between 0.002
and 20000. An injection well is placed at (610, 425) and a production well is located at (630, 1825).
We consider a 25 block decomposition (5x5) with each block discretized on the fine level. The results
from three different runs are presented: a fine grid (1 block) simulation, a multiblock run with a
single linear mortar element on each interface (coarse mortar), and a multiblock run in which the
interfaces near the wells have been refined to 6 continuous linear mortar elements (adapted mortar).
As can be seen from the oil pressure profiles (Figure 8) and the oil concentration profiles (Figure 9)
after 2951 days of simulation, both mortar solutions approximate reasonably well the fine grid
solution, with the adapted mortar capturing somewhat better some of the fine scale features of
the flow. The adapted mortar solution reduces the production well rates discrepancy from the fine
grid solution by factor of 2 compared to the coarse mortar, at the cost of increasing CPU time
by 50%. These results indicate that higher accuracy can be achieved by appropriately adapting
the mortar degrees of freedom, increasing only fractionally the computation cost. This flexibility
of the mortar technique is especially useful in highly heterogeneous cases with large variations in
the velocities. The implementation of a fully automated adaptive mortar procedure in IPARS is a
subject of current research.

5.3 Multinumerics example: coupling of explicit and implicit models for two—
phase flow

In this section we discuss the use of different numerical algorithms for two—phase flow in different
subdomains (multinumerics) and we study the option of assigning the sequential model to some of
the blocks. In all Figures and Tables in this section the sequential model is assigned the letter E
and the implicit model is assigned the letter I. The major problem here is the design of an optimal
interface solver. While an implicit interface solver merges very well with implicit subdomain solvers,
it appears that, by analogy, an IMPES-like approach and an appropriate preconditioner would be
best to use on the interface for all blocks assigned to sequential model. On the other hand, it
remains to be determined what structure of solver and preconditioner on the interface would be
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Figure 8: Oil pressure profiles after 2951 days: fine grid (left), coarse mortar (middle) and adapted
mortar (right).

optimal when different models are used in different blocks. These are current research topics, and
in this paper we restrict ourselves to the use of an implicit interface solver. In addition, for a
multimodel parallel run, the optimal load balancing is determined on a case by case basis, see
[33, 31] which we did not attempt for the cases discussed in this paper.

The underlying example is a quarter—five-spot case from Section 5.1. The grid is divided
between 25 blocks and we assign the sequential model to some of the blocks and the implicit model
is assigned to the remaining blocks. The well rates for homogeneous and for heterogeneous cases are
shown in Figure 11 and Table 3 contains the values of computational time per interface iteration.
Here we only discuss most promising cases: i) with implicit model assigned everywhere (25 I) or
ii) implicit model assigned around both wells (I, 2 wells) or iii) implicit model assigned around
the production well only (I, 1 well). Well rates are also shown for the implicit model run without
multiblock decomposition (I, 1 block) which is used as a reference case. In addition, we show oil
concentration contours in Figure 10 for some model decompositions.

models in blocks time [sec]/iteration normalized # iterations
homogeneous heterogeneous H homogeneous heterogeneous

251 0.858 0.73 1.0 0.92

I (2, wells) + E (23) 0.177 0.242 2.01 5.45

I (1, prod. well) + E(24) || 0.193 0.221 0.94 5.63

Table 3: Timings for implicit model (I) coupled with sequential (E).

In general we found that for a typical waterflood experiment, regardless of decomposition or
models involved, the number of iterations on interface grows when front crosses the interface and
that it is also large at first time steps, before pressure solution is established. The first phenomenon
is obviously related to the variation in properties (mobilities and capillary pressure) across the
front. Another observation is that because sequential model appears to give sharper fronts that the
implicit, it is more advantageous to apply implicit model only “downstream” from the waterflood
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Figure 9: Oil concentration profiles after 2951 days: fine grid (left), coarse mortar (middle) and
adapted mortar (right).

front. That is why, for the homogeneous case, the number of iterations for case iii) is by a factor
of 2 smaller than the count for case ii). Note however that this phenomenon does not carry over to
the heterogeneous case in which it is hard to predict the “path” of the front. As concerns the time
per iteration, the results show that the smallest such quantity is obtained for the heterogeneous
case in case iii) as the number of cells assigned to the implicit model appeared to be a decisive
factor in the overall timings. At the same time, for the homogeneous case, the fastest setup per
iteration was with implicit models around both wells.

However, the best accuracy or the closest match of the well rates with the ones obtained with
no domain decomposition (1 block) was obtained when all blocks were assigned implicit model.

5.4 Multiphysics example.

In this section we demonstrate the flexibility of multiblock mortar implementation for local grid
refinement with nonmatching grids and with the use of multiphysics.

The example is synthetic with geometry of the case constructed from data on Khursaniyah field
[34], see Figure 12. The reservoir occupies a portion of a parallepiped of size 8000x8000x700 [ft] and
it is dipping non—uniformly in all directions from its center and it is surrounded by impermeable
strata; the permeability field is heterogeneous and uncorrelated, with mean Ky = 10[md] with ratio
of horizontal to vertical equal Ky /Ky = 10. In the center part we use fine grid to capture depth
variations in phase saturations. The use of coarse grid in the center block leads to overly simplified
flow results and will result in up to 10% discrepancies in the well rates with respect to the fine
grid case. With the described depth variations, the water—oil contact (WOC) occurs around depth
160 [ft], see Figure 13, and so a large part of the reservoir is essentially an aquifer. The center part
of the reservoir is where recovery takes place with 4 production wells and 2 injection wells that
maintain pressure. Location of wells on pictures can be seen in Figure 16.

Without multiblock decomposition, the use of fine grid in the center mandates the use of fine
grid essentially everywhere. With multiblock decomposition we use 9 blocks. Center block has fine
grid and all remaining 8 blocks have coarse grid and grids do not match across the interface.
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Figure 10: Multinumerics example: oil concentration profiles after 1000 days of simulation with 25
blocks and with different model decompositions (heterogenous case: fracture).

We set up two different physical examples:

A) Two-phase. In this example, the cells in the center block are in two-phase conditions
0 < Sy <1 and the cells in the surrounding blocks are in single phase conditions. As a result of
waterflood, the oil is swept of the middle part of the reservoir towards wells, see Figure 14. Note
appearance of pockets of oil. The distribution of fluids requires the use of at least of a two—phase
code and we use the two—phase implicit model here.

B) Three-phase. This example is similar except that we assume that the oil in the center blocks
is saturated with gas and that in addition, at the top of the reservoir there is a small gas cap with
Sy > 0. Initially, the gas cap is at S; = 0.61 and during the simulation, it decreases to Sy = 0.11,
see Figure 16. Note lower oil concentration in region where the gas cap resides. The presence of
gas here requires the use of a black—oil model.

models in blocks time/1000 days
two—phase case three-phase case

fine grid everywhere, 1 block 17766.855 52728.422

refined(center) + coarse(off-center) 5863.910 5781.920

same model in all blocks

refined(center) + coarse(off-center) 4623.780 4715.930

multiphase in center, single—phase off-center

Table 4: Timings for the field case [sec].
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Figure 12: Field case: depth profiles, multiblock decomposition (left) and permeability field (right).
Note fine grid in the center.

Both of these cases can be run using different simulation scenarios, possibly adjusting the model
and discretization to the objectives and resources available. We discuss the following scenarios: i)
fine grid everywhere and one block, one model and ii) fine grid in the center block and coarse grid
in the others, multiblock mortar solution with one model, and iii) like ii) but with single—phase
model in all blocks but the center block.

Table 4 contains the timings for the simulation setup i), ii), and iii). For simplicity, we used
uniform permeability field and rectangular domains. Also, the same subdomain nonlinear and linear
solver criteria and preconditioner parameters were used, with fixed £ = 0.1. The most efficient block
and model decomposition appears to be iii), as expected.

6 CONCLUSIONS

We present a multiblock formulation for multiphase flow in porous media which provides a frame-
work for coupling different physical models, different numerical methods, and non-matching grids
in a single simulation. This flexibility allows for a substantial reduction of the computational cost
of complex simulations (by appropriately choosing physical models and discretization schemes in
different parts of the domain) without sacrificing accuracy. In the case of a single mortar element on
each interface, our scheme computes an effective flow field based on fine scale subdomain solutions
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and coarse scale flux matching. Adaptivity in the mortar spaces provides a more accurate solution
at only fractionally increased cost.
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7 Appendix

Here we summarize briefly the parameters used in two—phase simulation results presented in the
paper. Unless otherwise stated, the two—phase parameters are as follows:

symbol meaning value

Ko oil viscosity 2.0000 [cp]

K water viscosity .5000 [cp]

Co oil compressibility .4000e-04 [/psi]

Cw water compressibility .3300e-05 [/psi]

Po oil standard density 56.000 [Ib/cu-ft]

Pw water standard density 62.340 [Ib/cu-ft]
porosity 0.2
permeability (vertical) 10[md]
permeability (horizontal) 100[md]

Sinit saturation at reference depth (initial equilibrium) 0.2

pinit pressure at reference depth (initial equilibrium) 500[psi]

Additionally, the parameters used in the multiphysics runs with black—oil model and with single
phase model were as follows
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Figure 14: Field case: oil concentration profiles after 1000 days for two—phase case. Left: field
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symbol meaning value

Ko oil viscosity 1.0000 [cp]

U water viscosity .3000 [cp]

Ky gas viscosity .015000 [cp]

Co oil compressibility varying, approx. 4e-05 [/psi]

Cu water compressibility varying, approx. 1.e-07 [/psi]

cg gas compressibility varying, approx. 1.4e-03 [/psi]

Po stock tank oil density 56.000 [Ib/cu-ft]

Pw stock tank water density 62.343 [1b/cu-ft]

Py stock tank gas density .04228 [Ib/cu-ft]
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