(funded by DOE)
Currently mankind extracts most of the fuel for the global economy from underground. The byproducts of consuming this fuel enter the atmosphere or remain on the surface. This situation is no longer tenable. A critical step toward future energy systems will be the ability to cycle fuel byproducts back to their original home: the Earth’s subsurface. Applications of this concept include storing CO2 in deep geologic formations and securing radioactive materials in appropriately engineered repositories. Our goal is to fill gaps in the knowledge base so that subsurface storage schemes are reliable from the moment they open. Two scientific Grand Challenges, which will be investigated in this project, contribute to the gap between forecast and outcome in geologic systems. First, byproduct storage schemes will operate in a far-from-equilibrium state. Second, it is difficult to explain the emergence of patterns and other manifestations of correlated phenomena across length and time scales.